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The visual system has the remarkable ability to integrate frag-
mentary visual input into a perceptually organized collection of
surfaces and objects, a process we refer to as perceptual in-
tegration. Despite a long tradition of perception research, it is not
known whether access to consciousness is required to complete
perceptual integration. To investigate this question, we manipu-
lated access to consciousness using the attentional blink. We show
that, behaviorally, the attentional blink impairs conscious decisions
about the presence of integrated surface structure from fragmented
input. However, despite conscious access being impaired, the ability
to decode the presence of integrated percepts remains intact, as
shown through multivariate classification analyses of electroen-
cephalogram (EEG) data. In contrast, when disrupting perception
throughmasking, decisions about integrated percepts and decoding
of integrated percepts are impaired in tandem, while leaving
feedforward representations intact. Together, these data show that
access consciousness and perceptual integration can be dissociated.

phenomenal consciousness | access consciousness | perceptual integration |
masking | attentional blink

There has been a long-standing debate about the relationship
between consciousness and the integration of information,

dating back at least to Helmholtz who proposed that conscious
perception is the result of unconscious integration of spatially
scattered features, allowing the brain to make perceptual infer-
ences about visual input (1). However, information integration
can occur locally, within sensory modules, or globally, when in-
formation is communicated to widespread areas across the brain,
including response modules. Whereas the first type—to which we
refer here as perceptual integration—has been related to phe-
nomenal consciousness (subjective experience; refs. 2, 3), the
latter type of integration has been linked to access (or in some
views “true”) consciousness (availability for report; refs. 4, 5). In
the current study, we investigate whether perceptual integration
is ontologically independent from conscious access, by de-
termining to what extent it maintains its neural signature when
access to consciousness is disturbed.
We use the Kanizsa illusion (Fig. 1A), together with two well-

known manipulations of consciousness, to assess whether neural
representations can reach a state of integration in which features
are combined to form perceptual entities, despite not being con-
sciously reported. Kanizsa figures are similar to control figures in
terms of physical input, but they have very different perceptual
outcomes, notably an illusory surface region with accompanying
contours (6) and increased brightness (7). These emergent prop-
erties are a primary demonstration of perceptual integration, as
the constituent parts in isolation (the inducers) do not carry any of
the effects that are brought about by their configuration.
Earlier work has shown that Kanizsa configurations can

facilitate detection of target stimuli, with and without competing
objects (8–10). However, in these studies, conscious access has
been implemented in various ways, whereas the dependent
measure was always a behavioral response. The only study that
has measured the neural substrate of perceptual integration in
the absence of conscious report, postponed the behavioral re-
sponse until after data collection (11), leaving open the possi-
bility that subjects were consciously accessing the stimulus during

scanning but had forgotten it at test time. The level at which
conscious access and perceptual integration interact thus re-
mains unclear. The current study used several electroencepha-
lographic (EEG) measures to investigate the neural substrate of
perceptual integration under two different types of manipula-
tions known to affect consciousness: masking and the attentional
blink (AB) (see Fig. 1B for the factorial design).
Masking is known to leave feedforward processing largely intact

while selectively interfering with local processes of perceptual
integration, as well as behavioral detection (12–14). See refs. 15
and 16 for more in-depth reviews about the distinction between
feedforward integration and local recurrence-based perceptual
integration. We therefore expected masking to interfere with both
behavior and perceptual integration. The AB, on the other hand,
is thought to impair behavioral detection and access to con-
sciousness (17) by disrupting long-range integration (18), but to
what degree perceptual integration occurs without conscious ac-
cess has not been established. Therefore, the crucial question in
the current study was whether neural markers of perceptual in-
tegration would be impaired when access was disturbed by the AB.

Results
The main experiment consisted of two phases. In the first phase,
16 subjects performed a behavioral training session to become
familiar with the task and the stimulus set. Subjects who per-
formed adequately were enrolled in the EEG phase (11 out of
16; see SI Methods for details). In the second phase, we recorded
64-channel EEG data in two EEG sessions. Two black target
figures (T1 and T2) were shown in a rapid serial visual pre-
sentation (RSVP) containing red distractors. Each target could
either be a Kanizsa or a control figure (Fig. 1A and Fig. S1).

Significance

Our brain constantly selects salient and/or goal-relevant ob-
jects from the visual environment, so that it can operate on
neural representations of these objects, but what is the fate of
objects that are not selected? Are these discarded so that the
brain only has an impoverished nonperceptual representation
of them, or does the brain construct perceptually rich repre-
sentations, even when objects are not consciously accessed by
our cognitive system? Here, we answer that question by ma-
nipulating the information that enters into awareness, while
simultaneously measuring cortical activity using EEG. We show
that objects that do not enter consciousness can nevertheless
have a neural signature that is indistinguishable from percep-
tually rich representations that occur for objects that do enter
into conscious awareness.
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T1 and T2 lag was varied, inducing an AB at short lags (300 ms)
with recovery at long lags (≥600 ms). In one-half of the trials,
T2 was strongly masked using high-contrast masks. In the other
half, low-contrast masks were used, so that there was no effect of
masking (see examples of masks in Fig. S2). Examples of two of
the four trial types are shown in Fig. 1B. At the end of each trial,
subjects indicated whether T1 and/or T2 contained a surface re-
gion (see SI Methods for details). The ability to distinguish surface
from control figures was computed as the hit rate (HR) minus the
false-alarm rate (FAR), serving as a behavioral index of percep-
tual integration. T1 accuracy was high, at 0.90 (SEM, 0.02).
To establish a neural index for perceptual integration, we

trained a linear discriminant classifier to categorize trials as ei-
ther Kanizsa or control, using the amplitude of the EEG signal
across electrodes as features for classification (see SI Methods for
details). To prevent task and response-related processes from
contaminating this neural index of perceptual integration, the
training set was obtained from an independent RSVP task con-
taining Kanizsas and controls. In this task, subjects pressed a
button on black figure repeats (1-back task on black targets while
ignoring red distractors; Fig. S3). This prevented task, response,
or decision mechanisms from confounding classification perfor-
mance, as target identity (repeat or not) was independent from
stimulus class (Kanizsa or control), and all trials on which a re-
sponse was given were excluded.
Next, we used this classifier on the experimental runs, computing

classification accuracy (HR − FAR, just as in the behavioral
measure) for every time sample, yielding classification accuracy
over time. As in behavior, Kanizsa vs. control classification ac-
curacy for T1 was well above chance, peaking at ∼264 ms (Fig.
2A), and was strongly occipital in nature [see correlation/class-
separability map (19) in Fig. 2B]. For this reason, classifications
in this analysis were restricted to occipital electrodes (see SI
Methods and Fig. S4 for details). The fact that the classifier was
able to discriminate Kanizsas from controls was reassuring, but
we also wanted to establish a direct link between peak classifi-
cation accuracy and perceptual integration.
To achieve this, we first computed behavioral accuracy sepa-

rately for the 12 Kanizsa–control pairs that were used in the
experiment. Different Kanizsa–control pairs yielded different
behavioral accuracies due to inherent differences regarding the

ease with which Kanizsa figures are perceptually integrated to
result in surface perception (see Fig. S1 for the full Kanizsa–
control stimulus set). Next, we applied a robust linear regression
analysis (20) to determine whether T1 peak classification per-
formance for these pairs (the neural index for perceptual in-
tegration) would be able to predict behavioral accuracy at T1.
Peak classification accuracy was able to predict behavioral per-
formance with remarkably high accuracy (R2 = 0.61, P < 0.005;
see Fig. 2C, using colored dots to refer to the specific Kanizsa–
control pairs in Fig. S1), providing independent evidence that peak
classification accuracy captures the signal underlying perceptual
integration. Similar results were obtained for the individual ex-
perimental conditions (SI Results, Prediction of Behavioral Accu-
racy Based on Neural Classification Accuracy, and Fig. S5). Finally,
we also checked whether there was a contribution of frontal
electrodes to perceptual integration. Although we observed a
small but significant effect of classification accuracy at T1 and at
long lags, this signal was not predictive of perceptual integration
across the 12 Kanizsa–control pairs, suggesting that it reflects a
generic presence–absence signal (SI Results, The Contribution of
Frontal Cortex to Perceptual Integration, and Fig. S6).
Next, we wanted to establish how the AB and masking affect

the neural marker of perceptual integration. In terms of behav-
ior, we observed the classic detrimental effects of both masking
(mask vs. no mask, F1,10 = 426.54, P < 10−8) and the AB (short
vs. long lag, F1,10 = 51.89, P < 10−4) on accuracy (Fig. 2F). There
was also an interaction (F1,10 = 52.17, P < 10−4), which was
entirely driven by the difference between unmasked long- and
short-lag trials (post hoc t test, P < 10−4).
We hypothesized that, if both masking and the AB impact

perceptual integration, they should both affect neural markers of
perceptual integration in similar ways. To enable a direct com-
parison with behavior, we extracted classification accuracy in the
four experimental T2 conditions. Fig. 2D shows the entire time
course, and Fig. 2E shows peak classification accuracy at 264 ms
(latency taken from T1). A 2 × 2 analysis of variance (ANOVA)
showed a highly significant main effect of masking (F1,10 = 37.68,
P < 0.001), but no AB effect (short vs. long lag) (F1,10 = 2.16, P =
0.172), and no significant interaction between masking and the
AB (F1,10 = 0.02, P = 0.963). Post hoc t tests confirmed signifi-
cant costs for masked vs. unmasked stimuli for both long and
short lag (both P < 0.001), but no significant differences between
long lag and short lag (both P > 0.25). Moreover, we were able to
show this by training the classifier on an independent RSVP
training set that was not confounded by task-related decision or
response mechanisms. Note that we confirm these findings in an
analysis in which we train the classifier on T1 using all electrodes,
intended to investigate the contribution of such mechanisms to
the observed data pattern (see Fig. 5).
Thus, although we observe a strong effect of masking in both

brain and behavior, the classic AB effect only occurs in behavior.
To further statistically underpin the differential effect of con-
scious access on behavioral and neural measures of perceptual
integration, we entered both measurements into a 2 × 2 × 2
ANOVA with factors measure (normalized behavioral/normal-
ized neural), AB (yes/no), and masking (yes/no). The validity of
treating neural and behavioral HR − FAR data as repeated
measures of the same thing (i.e., classification of a perceptual
object) is discussed in SI Methods. In line with the other results,
this analysis showed a three-way interaction effect driven by
differences in behavioral and neural classification accuracies
(F1,10 = 9.30, P = 0.012), as well as a two-way interaction be-
tween measure and AB (F1,10 = 10.92, P = 0.008) but no in-
teraction between measure and masking (F1,10 = 1.51, P =
0.247). We also provide a confirmatory analysis in which we
analyze the neural data contingent on behavioral selection, but
would like to stress that such an approach has severe pitfalls and
limitations (SI Results, Seen–Unseen Analysis, and Fig. S7).
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Fig. 1. Experimental design. (A) Examples of different Kanizsa images and
their controls as used in the experiment (see Fig. S1 for the complete stim-
ulus set). (B) Examples of two of the four trial types in the factorial design:
without an AB (long lag) and strong masking (Left) and with an AB (short
lag) and no masking (Right).
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These data show that masking disrupts perceptual integration,
whereas the AB does not. However, a concern might be that
masking wiped out all processing of the stimulus, rather than
specifically affecting perceptual integration, resulting in a floor
effect. To test this, we reanalyzed the data from the main ex-
periment by selecting a subset of the stimulus set that could be
divided orthogonally according to its impact on input energy
(contrast) or its impact on perceptual integration (surface per-
ception). Fig. 3A illustrates this: the horizontal axis captures
differences in perceptual integration (surface perception on the
right but not on the left), whereas the vertical axis captures
difference in bottom-up energy (high contrast between the in-
ducers and the background vs. low contrast between inducers
and background; see Fig. S8 and SI Methods for a specification of
the entire stimulus set). If masking wipes out all stimulus pro-
cessing, we should not be able to classify high- vs. low-contrast
stimuli. We computed classification accuracy for feature contrast
on the one hand and perceptual integration on the other, using a
within-condition eightfold cross-validation scheme (collapsing
over short and long lag; see SI Methods for details).
The results are shown in Fig. 3 B and C. In an early time

window of ∼80–90 ms, both masked and unmasked stimuli
showed highly significant classification accuracies for feature
contrast [left panels, masked: t(10) = 7.45, P < 10−4; unmasked:
t(10) = 8.82, P < 10−5, statistics at ∼92 ms, T1 peak latency]. Thus,
despite strong masking, the bottom-up signal is processed up to
the point of contrast detection. Conversely, masking does wipe
out classification accuracy on the perceptual integration dimension

[right panels, masked: t(10) = −0.19, P = 0.852; unmasked: t(10) =
6.82, P < 10−4]. Note that the same type of masks would follow all
stimulus classes (regardless of whether these were Kanizsa, control,
high or low contrast), such that the masks themselves could not bias
classification accuracy. These results confirm that masking selec-
tively abolishes perceptual integration, leaving feedforward pro-
cessing largely intact (12–14). In addition, this shows that the
reduced classification accuracy for perceptual integration cannot be
explained by a generic effect of reduced classification sensitivity
under masking.
Another concern might be that EEG classification accuracy is

an all-or-none phenomenon, whereas behavior relies on graded
evidence. In such a scenario, the behavioral effects on perceptual
integration (Fig. 2F) might not be reflected in classification ac-
curacy (Fig. 2E) due to a lack of sensitivity of the classifier to
smaller effects such as those observed during the AB. To test this
hypothesis, we conducted a control experiment in which we used
a staircase to titrate mask contrast to get a weaker behavioral
effect of masking, similar in magnitude to the effect of the AB in
Fig. 2F (see SI Methods for details). Fig. 4A shows the resulting
behavioral effect of weak masking in this experiment. When
computing classification accuracy on these data, we see that it
nicely follows behavior (Fig. 4 B and C) [t(5) = 3.82, P = 0.012].
Together, these results show that the drops in behavioral accu-
racy caused by masking and the AB have different root causes:
masking impacts perceptual integration directly, whereas the AB
leaves it intact. A more detailed treatment can be found in SI
Discussion, Mechanisms of Masking and the AB.
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So what neural process causes the dip in behavioral accuracy
during the AB? A natural hypothesis would be that the AB in-
terferes with conscious access after perceptual integration has
already taken place. If true, we should be able to observe evi-
dence of a selection process that results in conscious access at a
later point in time. Investigating this issue requires a classifier
that is sensitive to selection. Because the independent training
runs that we used for training the classifier in the first analysis

were designed to control for the direct influence of decisions and
responses, these might not capture such a mechanism. The neural
response to T1, however, does involve a conscious decision about
the presence of a Kanizsa. We therefore trained a classifier on
T1 data and tested it on T2 data, this time using all electrodes as
this resulted in better classification accuracy than occipital elec-
trodes only (SI Methods and the top row of Fig. S9). Fig. 5 A and B
show classification accuracies for the four experimental conditions
when using this T1 classifier.
We again find the initial peak at 264 ms that was described

before. Despite the potential contribution of frontal electrodes
and decision mechanisms to classification accuracy when training
on T1, this peak follows a pattern that is similar to the pattern
that we observed when training on the independent training runs
using only occipital electrodes (Figs. 2E and 5B, Top), and that
does not follow behavioral accuracy (Fig. 2F; see SI Results,
T1-Based Classification at 264 ms, for statistical tests). So at what
point in time is the behavioral effect of the AB reflected in the
neural data? The most notable difference when training on T1 is
a second peak in classification accuracy occurring around
406 ms, which is heavily modulated by the AB (Fig. 5A). At this
time point, the pattern of results is identical to that obtained in
behavior (Figs. 2F and 5B, Bottom, as well as Fig. S9, Bottom).
All manipulations had highly significant effects on classification
accuracy: a main effect of AB (F1,10 = 7.96, P = 0.018), a main
effect of masking (F1,10 = 130.19, P < 10−6), as well as a strong
interaction effect (F1,10 = 14.92, P = 0.003).
To directly compare behavioral to neural data at 406 ms, we

again entered the normalized measurements into a 2 × 2 × 2
ANOVA with factors measure (behavioral/neural), AB (yes/no),
and masking (yes/no). The results show highly significant main
effects of the AB (F1,10 = 23.65, P < 0.001), masking (F1,10 =
528.18, P < 10−9), and a strong interaction effect between AB
and masking F1,10 = 51.55, P < 10−4), but importantly no two- or
three-way interaction effects with measurement (neural/behav-
ioral, all F1,10 < 3.08, all P > 0.110). This underpins the similarity
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between the behavioral and neural data pattern at this time point.
The correlation/class separability map at 406 ms (Fig. 5B, Bottom)
has the same topology as that of a classical P300 (or P3b), which
has been frequently associated with conscious access and per-
ceptual decision-making (e.g., ref. 18). These data provide con-
verging evidence that neural signals around the time frame of the
P300 reflect a postperceptual signal that reflects conscious access,
rather than perceptual integration itself. What we unambiguously
show is that perceptual integration precedes such conscious access.
In a statistical sense, we have so far regarded behavioral and

classification accuracy data as repeated measures of the same
underlying perceptual object. Another approach would be to
assess the degree to which the neural data are able to serve as a
model for behavior across time. To do this, we used normalized
classification accuracies from the T1 classifier as reference points
to determine the goodness of fit (GOF) with normalized be-
havioral accuracies as test data. As a measure of GOF, we used
the normalized root mean square error (NRMSE) cost function
given by the following:

fitðtÞ= 1−
jjxref ð:, tÞ− xð:Þjj

jjxref ð:, tÞ−meanðxref ð: , tÞÞjj  ,

where x denotes the test data (behavioral accuracy), xref denotes
the neural data (classification accuracy), jj indicates the 2-norm
(Euclidean length) of a vector, fit is a row vector of length Nt and
t = 1, ..., Nt, where Nt is the number of time points. NRMSE costs
vary between −Infinity (bad fit) to 1 (perfect fit). If the GOF cost
function is equal to zero, then x is no better than a straight line at
matching xref. We obtained this fitness measure separately for the
different factors by collapsing the neural and behavioral data ei-
ther across the masking factor, across the AB factor, or without
regard to either factor (SI Methods). The results are shown in Fig.
5C, where we also plot T1 classification accuracy as a reference for
the time course of perceptual integration. Fig. 5C confirms that,
up to 264 ms, the masking manipulation uniquely models (pre-
dicts) behavior, indeed better than when the AB is also allowed to
contribute to the fit. Only after 264 ms does the AB start to
contribute to behavioral outcomes, trailing the perceptual integra-
tion signal itself and in line with prior analyses.

Discussion
We show that EEG can be used to decode the presence of in-
tegrated percepts in visual cortex. Furthermore, we show that

masking obliterates behavioral accuracy and classifier perfor-
mance. Because the ability to decode feature contrast is retained
under masking, the effects of masking on perceptual integration
cannot be attributed to generic effects of masking on the sensi-
tivity of the classifier. Rather, masking selectively disrupts per-
ceptual integration while leaving feedforward signals intact (12–
14). Interestingly, however, peak classification performance on
integration remains unchanged during the AB, despite causing a
marked dip in behavioral accuracy. This shows that the brain is
able to integrate features into perceptual objects when conscious
access is impaired. These results seem to fit nicely with early
findings showing semantic effects without conscious access (17)
and more recent findings that the meaning of multiple words can
even be integrated unconsciously to reflect semantic valence (21),
but see SI Discussion, How Does Perceptual Integration Relate to
Semantic Integration of Words, for a more nuanced treatment.
The idea that perceptual integration can occur without con-

scious access is seemingly at odds with experiments on object-
based attention. For example, in an experiment by Roelfsema
et al. (22), monkeys were trained to perform a curve-tracing task.
Attention to the task-relevant curve resulted in a spreading acti-
vation across V1 neurons that coded the features belonging to the
curve, thus binding the constituent elements of the curve together.
This suggests that serial access is the glue that unites an object, in
line with the classical framework put forward by Treisman and
Gelade (23), and inconsistent with the position that perceptual
integration can occur without conscious selection. With some
exceptions, however (e.g., refs. 24 and 25), attention and conscious
access are usually conflated, precluding their disentanglement.
Hence, the perceived relationship between conscious access and
perceptual integration may be mediated by attention, such that
perceptual integration may occur without conscious access as long
as stimuli are attended and/or intrinsically task relevant. Impor-
tantly, we do not claim that perceptual integration is not modu-
lated by attention or task relevance.
Rather, we show that Kanizsa figures can be integrated in vi-

sual cortex despite not being promoted to a consciously acces-
sible state. In contrast, masking destroys perceptual integration
regardless of task demands. Naturally, this difference must be
reflected in neural mechanisms. Dynamic feature grouping that
underlies perceptual integration is thought to rely on cortico-
cortical feedback. Although much remains to be learned about
the origin of these feedback signals, evidence suggests that they
originate from within visual cortex and thus are local in nature
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(14–16, 26–28). Although conscious access also involves feed-
back, such long-range feedback originates from frontoparietal
cortex (18). In the consciousness literature, long-range in-
tegration is often referred to as “global ignition” occurring in the
time frame of the P300 at 400–500 ms (4), whereas local in-
tegration within visual cortex is associated with activity in the
200- to 300-ms time frame (29). The current data suggest that
perceptual integration occurs in this early time frame and does
not require global ignition.
These results also speak to a current debate about whether

consciousness overflows cognitive access (30, 31). In this debate,
the question is whether access causes representational content to
be extracted, or whether it acts to select from a rich represen-
tational set that cannot be accessed in its entirety. In support of
the latter position, retrocueing studies show that the represen-
tational capacity in early visual cortex is much larger than what

can be accessed at any given moment (e.g., ref. 32). A recent
study has questioned these results, suggesting that a retrocue
might serve to postdictively impact perception (33). The current
study resolves this issue by using a direct neural measure of
perceptual integration to show that perceptual integration pre-
cedes conscious access. We provide a more detailed treatment of
the implications of these results in SI Discussion, Implications for
Global Neuronal Workspace Theory and the Debate About the
Existence of Phenomenal vs. Access Consciousness.
This study was performed in accordance with the Declaration

of Helsinki under approval of the ethics committee of the Fac-
ulty of Social and Behavioral Sciences, Utrecht University. All
participants signed an informed consent.
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SI Methods
Participants. Sixteen right-handed participants (nine females,
mean age of 24 y; and seven males, mean age of 25 y) participated
in the study for monetary reward. All participants had normal,
or corrected-to-normal, vision (mean left eye, 2020; mean right
eye, 2030).

Stimuli. We constructed a set of 12 Kanizsa–control pairs of
different shapes: triangles, squares, and pentagons (Fig. S1).
Traditionally, controls are created by rotating the inducers out-
wardly. Although such controls retain the overall configuration
of the inducers, they allow for Kanizsa recognition using low-
pass spatial frequency filters (6). Moreover, the support ratio
of the stimulus (the ratio between the physically specified side
length and illusory side length) is obliterated in such controls.
We therefore constructed controls in which one or more of these
characteristics were optimally matched with their Kanizsa coun-
terpart; keeping the shapes of the inducers intact (see numbers 1,
2, 3, 4, 6, 7, 9, 10, and 11 in Fig. S1), retaining the low spatial
frequency characteristics of the global stimulus (see numbers 1, 4,
5, 8, and 12 in Fig. S1), as well as maximizing the support ratio of
controls (see numbers 1, 2, 3, 4, 5, 6, 8, and 11 in Fig. S1) com-
pared with their Kanizsa counterparts. In cases where large in-
ducers were rotated outwardly (see numbers 1, 6, 7, 9, 10, and
11 in Fig. S1), we rotated the inducers around their center of
gravity rather than around their “veridical” center, so as to further
minimize differences between Kanizsas and controls in terms of
their global spatial-frequency characteristics.
As a result, the stimulus set contained large variations in terms

of physical properties across stimulus instances but had similar
physical properties within any given Kanizsa–control pair. Be-
cause the classification analyses involve single-trial extraction of
class membership that needed to carry over from one stimulus
instance to the next to be able to work (i.e., the task was to
classify stimuli based on the existence of surface information,
irrespective of the physical features of the inducers or the shape
of the configuration of the inducers), differences we observed
in the Kanizsa–control dimension could not be explained by
any single physical property but were particular to differences
resulting from perceptual integration. Put differently: neither the
subjects nor the classifier could solve the task by using particular
features of any of the inducers; the only way of solving the
classification task was to perceptually integrate the features and
establish the existence of surface information to determine class
membership. Finally, the total region covered by Kanizsa figures
(including inducers) was 9.4° × 8.5° (degrees visual angle) for
triangles, 7.4° × 7.4° for squares, and 7.7° × 7.7° for pentagons,
keeping only the size of the illusory surface region approximately
the same between shape types.
Masks were created by randomly rotating inducer elements

from the Kanizsa and control images (Fig. S2). There were
10 masks for each stimulus shape. Masks were picked randomly
from these sets, but always matching masks to shapes, so that
triangular Kanizsas and controls would be followed by triangularly
organized masks, square Kanizsas and controls by square masks,
and pentagonal Kanizsas and controls by pentagonal masks. All
stimuli and masks were generated using Adobe Illustrator CS6
(Adobe Systems).

Procedure and Tasks of Main Experiment. All tasks were pro-
grammed in Presentation (Neurobehavioral Systems) and dis-
played on a 19-inch CRT-monitor running at 100 Hz. Subjects

participated in a total of three sessions. The first session was a
training session to make subjects familiar with the task and the
stimulus set. In this task, Kanizsa and control images were pre-
sented for 10 ms, and participants were prompted to identify
whether the image contained a surface. When they were able to
perform this task with an accuracy of more than 90%, they
continued with the next task. In the second part of the practice
session, participants performed a no-blink (long lag) version of
the experimental task to determine whether they were able to
correctly identify black T1 and T2 targets amid an RSVP of red
distractors. Subject performance was computed as hit rate (HR)
(the fraction of Kanizsa figures categorized as containing a
surface) minus false-alarm rate (FAR) (the fraction of control
figures categorized as containing a surface). If their HR minus
FAR exceeded 0.8 in both T1 and T2, they went on to the third
and final part of the practice session. In this part, they performed
two versions of the experimental task to determine at what latency
the T2 induced the largest AB for that subject.
The task was the same as the experimental task but did not

include the masked conditions. The difference between these two
versions was the interstimulus interval (ISI). In the first version,
the ISI was 150ms (resulting in a short AB lag of 300ms), whereas
the second version had an ISI of 100 ms (resulting in a short AB
lag of 200 ms). If the participants were not able to perform ad-
equately in one of the tasks or did not show a sufficiently strong
AB, they were excluded from the rest of the experiment. Eight
participants performed the EEG sessions at an ISI of 150 ms
(short AB lag: 300 ms), three participants did the task at an ISI of
100 ms (short AB lag: 200 ms), and five participants were ex-
cluded after the first training session for not meeting one or more
of the above criteria for inclusion.
Subsequently, subjects took part in two separate sessions on

separate days, in which they performed the experimental task
while their EEGwas recorded. The experimental task consisted of
an RSVP in which they had to detect two targets (T1 and T2, see
Fig. 1B). The first 8–15 RSVP elements before T1 were red
distractors, either followed by one red distractor (short lag) or by
four to seven red distractors (long lag). Another five to seven
distractors would appear between T2 and the response screen,
asking subjects to indicate whether the first and/or second target
contained a surface. One-half of the T2 targets was followed by a
strong high-contrast mask, and the other half was followed by a
weak low-contrast mask. The weak mask was only used to make
the conditions as comparable as possible, but not intended to
impede visibility. Subjects gave two responses, the first for T1,
and the second for T2. Responses consisted of button presses
using a two-button box attached to the right arm of the chair,
with the left button indicating “I perceived a surface” and the
right button indicating “I did not perceive a surface.” Each of the
two sessions consisted of nine blocks of this experimental task.
Each block consisted of 24 Kanizsa and 24 control images for
each of the four conditions resulting in 192 trials per block.
Across both experimental sessions, the participants performed a
total of 3,456 trials of the experimental task.
In addition to the experimental blocks, they also performed a

1-back RSVP task, which was used to train the multivariate
discriminant classifier. In this 1-back task, black images (Kanizsa
and control) and red distractor images were displayed in an RSVP,
interleaved with one another, at an ISI of 1,000 ms (±50-ms jitter).
Each image was displayed for 10 ms (Fig. S3). Image type
(Kanizsa or control) was randomized, with three randomly oc-
curring repetitions in every 10 black images. Participants were
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required to press a button every time a black image repeated itself
while ignoring the red images. There was no relationship between
stimulus type (Kanizsa or control) and image repetition, the task
was purely intended to keep attention focused on the screen, and
the behavioral data were not analyzed further. Over both experi-
mental sessions, participants performed 1,152 trials of this task,
split across eight blocks.

Procedure and Tasks of the Masking Control Experiment. Six subjects
from the main experiment took part in the masking control ex-
periment (see main text for task rationale), which consisted of one
EEG session. The difference with the main experiment was that
the AB manipulation was not included and that the strong mask
condition was replaced by a variable weak-mask condition. The
experiment was identical with respect to timing and response
method. Before testing, each subject performed a staircase to
titrate the contrast of the weak masks so that subject performance
was the same as their performance in the unmasked short-lag AB
condition of the main experiment. After the staircase, subjects
performed nine blocks of the control experiment (1,728 trials)
while their EEG was recorded. In addition, they performed four
blocks of the same RSVP 1-back task as in the main experiment
(576 trials).
We used a double-staircase procedure using the weighted up-

downmethod (34). Masks were presented on a white background.
Contrast was adjusted by changing the intensity of the masks. One
staircase started out at the minimum contrast, and the other
started at the maximum contrast. The staircase was updated only
on trials with a Kanizsa figure: detection of the Kanizsa (hit)
increased the difficulty (Sdown), and indicating absence of a
Kanizsa (miss) decreased the difficulty (Sup). The step size with
which mask contrast was changed, was determined using the
weighted rule Sup*p = Sdown*(1 − p), in which Sup is the upward
step size corresponding to a decrease of mask contrast, whereas
Sdown is the downward step size corresponding to an increase
of mask contrast, and p is the percentage correct onto which
the staircase should converge. For example, if a subject had a
HR of 0.7 in the short-lag condition of the main experiment, the
relationship between the two step sizes would be Sup*0.7 =
Sdown*0.3, rounding off to the nearest available values that fit
given the available contrast levels (there were 20 available con-
trast steps between minimal and maximal).
The staircase ended after 12 reversals. The median reversal

contrast for both staircases was used as starting point for mask
contrast. During the experimental blocks, mask contrast was
updated after each block, based on the behavioral performance in
the previous block. The updating was done to keep the behavioral
performance as close as possible to the unmasked short-lag
condition in the main experiment. Updating was rare; for four
of the subjects, mask contrast was adjusted only twice (on the first
two blocks). One subject had mask contrast adjusted once (after
the first four blocks), and one subject did not have the mask
contrast adjusted at all.

Behavioral Analysis.Where applicable, all reported statistical tests
are double sided. Responses were scored as hits (Kanizsa correct)
misses (Kanizsa incorrect) correct rejections (control correct) and
false alarms (control incorrect). The HR was computed as the
fraction of Kanizsa figures categorized as containing a surface,
whereas the FAR was computed as the fraction of control figures
categorized as containing a surface. Behavioral performance was
computed as HR minus FAR for each of the conditions to de-
termine how well they performed on the task. Repeated-measures
ANOVAs were used to detect main and interaction effects of the
conditions.

EEG Data Collection and Preprocessing. EEG data were collected at
2,048 Hz using a 64-channel ActiveTwo system (BioSemi). EEG

data analysis was performed using Matlab (MathWorks), the
EEGLAB toolbox (35), and custom-written Matlab scripts to
perform multivariate classification.
All data were referenced to the average of the mastoids,

downsampled to 512 Hz, and epoched between −500 and
1,000 ms. Trials containing muscle artifacts were removed using
an adapted version of the ft_artifact_zvalue muscle artifact de-
tection function taken from the FieldTrip toolbox (36). This
function applies a frequency filter between 110 and 140 Hz and
assigns a Z value to each time point to ascertain the degree to
which power values in that frequency range deviate from nor-
mality. Trials that contained Z-score outliers more than 3 SDs
away from the absolute value of the minimum negative Z value
were discarded. Next, the data were high-pass filtered at 0.1 Hz.
No low-pass filtering was applied.
We did not apply baseline correction to the T2 data obtained

from the main AB/mask experiment, as baseline correction in-
troduces unwanted confounding effects on short-lag vs. long-lag
trials. There are two potential ways of performing baseline cor-
rection in this experimental design: (i) either one chooses a fixed
baseline time window before a T2 target or (ii) one applies a
baseline that comes from a fixed time window before T1. Both
approaches are problematic. The first approach only works when
picking a clean baseline period before trial onset (so before T1),
keeping the distance between baseline and T2 fixed (which
would result in a different baseline time window, depending on
whether T2 was a short- or long-lag trial). However, this would
have required an extremely long clean intertrial interval, which
given the long trial sequence we already had was not feasible.
When picking a baseline window that is closer to T2, the baseline
period would overlap with T1 or with the T1–T2 lag period
depending on whether it is a short- or long-lag T2. In that case,
task-related activity during the baseline period would get in-
troduced into the T2 period. The second approach is also
problematic because the period between the baseline period and
T2 onset would be different for short- and long-lag trials,
allowing long-lag trials to drift off more than short-lag trials. We
investigated this and confirmed that such a procedure indeed
artificially boosts the short-lag T2 signal compared with the long-
lag T2 signal, counteracting a potential impact of the AB. In-
stead, we therefore performed a 0.1 high-pass filter, which takes
slow drifts out of the signal, similar to performing a baseline
correction, but does not have any of the aforementioned prob-
lems. However, we did perform baseline correction on the RSVP
and T1 training sets, and on the masking testing set from the
control experiment, because none of these carry the T2-specific
baseline problems outlined above. When baseline correction was
carried out, it was always applied on the period of −250 to 0 ms
before stimulus onset.
Finally, we ran a number of control analyses to ascertain the

influence of eyeblinks on the classification analysis, using both an
independent component analysis to remove eyeblink components
as well as using a procedure to remove all trials containing
eyeblinks altogether. Neither procedure had quantitative or
qualitative effects on any of the classification results compared
with leaving the eyeblinks in, so we opted to retain the signal in its
original form and not remove eyeblinks.

EEG Multivariate Pattern Analyses. For each participant, we applied
a backward decoding classification algorithm either using the
independent RSVP data for training, using the T1 data for
training, or using an eightfold cross-validation scheme (explained
further down below). In all analyses, we trained a linear dis-
criminant classifier to discriminate Kanizsa and control images
using the raw EEG activity across electrodes as the features used
for classification. Next, we computed classification accuracy of
the classifier as the HR (the fraction of Kanizsa figures that were
classified as Kanizsa) minus the FAR (the fraction of control
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figures that were classified as Kanizsa) for each subject, and for
each of the conditions: T1, masked AB, unmasked AB, masked
without AB, and unmasked without AB. The procedure was
executed for every time sample in a trial, yielding the evolution
of classification accuracy over time for each of the conditions.
All statistical tests were double-sided t tests across subjects of
classification accuracy (HR − FAR) against zero. When plotting
significant intervals over time, t tests were corrected for multiple
comparisons using cluster-based permutation testing (1,000 iter-
ations, at a threshold of 0.05). In this procedure, the sum of the
t values in the observed cluster of contiguously significant data
points is compared with the sum of the cluster of contiguously
significant data points under random permutation. The P value is
the number of times that the cluster sum under permutation
exceeds that of the observed cluster sum, divided by the number
of iterations (37).
Because the classifier weights that result from the training

procedure result from a backward model, they do not unam-
biguously reflect neural sources. They may have small amplitudes
for electrodes containing the signal of interest, but also large
amplitudes at electrodes not containing this signal, and may
therefore result in both type I and type II errors. To mitigate this
problem, we obtained topographic maps by using a method re-
cently described by Haufe et al. (19), in which the classifier
weights are multiplied by the data correlation matrix (Fig. S4A,
Left, for classifier weights). This operation creates a correlation/
class separability map (Fig. S4A, Right) that generates interpret-
able neural sources for which nonzero activity is only observed at
channels for which the task-related signal is both strong and highly
correlated with the task, while at the same time minimizing the
influence of potential artifacts.
We normalized both the weight and class/correlation separability

maps across electrodes for each subject, to be able to compute
topographic plots of condition averages across subjects. Fig. S4A
provides a direct comparison between classifier weights and the
correlation/class separability map. Perhaps unsurprisingly, the ef-
fect of perceptual integration was strongly occipital in nature.
Because the occipital electrodes yielded nonzero classifier weights
(Fig. S4A) and the highest classification accuracies (Fig. S4B), we
restricted the initial analyses of the experimental conditions by
using only occipital electrodes as features for classification (PO7,
PO3, O1, Iz, Oz, POz, PO8, PO4, and O2) to ensure that any
effects we observed were not due to poor signal-to-noise ratio.
Control analyses revealed that using all electrodes did not change
any of the effects that we observed.
Next, we used robust linear regression to characterize the

relationship between peak accuracy of the classifier and behav-
ioral accuracy at T1, using the 12 Kanizsa–control pairs as data
points (Fig. S1). Robust linear regression guards against viola-
tions of assumptions that are required for standard regression, as
well as the unwanted influence of outliers (38). This analysis
underpins the validity of viewing peak classification accuracy as a
neural measure for perceptual integration, evidenced by its
strong predictive power of the behavioral response regarding
surface perception. For more details regarding this analysis, see
SI Results, Prediction of Behavioral Accuracy Based on Neural
Classification Accuracy.
To be able to compare the differential effect of the four T2

conditions under behavioral and neural measures of perceptual
integration (HR − FAR), we entered the measurements into a
2 × 2 × 2 ANOVA of measure (normalized behavioral/normalized
neural), AB (yes/no), and masking (yes/no). The normalization
step Z-scores the data, separately within the behavioral and within
the neural matrix, subtracting their respective means and dividing
by their respective SDs. It is important to realize that this nor-
malization step does not change any of the statistics that result
from the initial 2 × 2 (masking yes/no ×AB yes/no) ANOVA
analyses. Whether entering the normalized or the nonnormalized

data into such an analysis, all F statistics, P values, and all other
aspects of the analysis remain the same. The only thing that
changes when entering both of these normalized matrices into a
large 2 × 2 × 2 ANOVA, is that any main effects of measure fall
out because the measure means have been subtracted out.
The rationale for doing this is that we are not interested in main

effects of measure, which is differentially affected by the signal-to-
noise ratio for behavioral and EEGdata. Rather, we want to know
whether the pattern that we observe under behavioral and neural
measures is the same or not, which can be obtained by looking
at the interaction between measure (normalized behavioral/
normalized neural) and the other factors.Whether one can regard
normalized behavioral and neural measures as repeated measures
of the same perceptual object can best be understood by drawing
an analogy. Let us say we want to know whether there is a dif-
ferential effect of X on Y at night and during the day, but there is
an overshadowing main effect on these measurements during
daytime and nighttime that we are not interested in (simply
because there is more light during the day, our measurement is
affected by this). In such a case, it would be valid to separately
normalize the measurements during day and during night, re-
moving the main day–night effect on the measurements to see
whether there is an interaction between factor X and moment of
measurement (day/night). This is essentially what we do here by
regarding the behavioral and neural measures of perceptual in-
tegration as repeated measures of the same thing, albeit with
different overall averages. An interaction between that factor
and the other factors shows that the underlying data pattern is
not the same for the two measurements, which suggests that the
experimental manipulations impact behavioral markers differ-
ently from neural markers.
In the next analysis, we looked at the degree to which a classifier

would be able to determine class membership regarding high or
low contrast on the one hand and high or low perceptual in-
tegration on the other (see Fig. S8 for the stimulus set), under
masking and no-masking conditions (collapsing across AB and
no AB trials). Because any potential contribution of decision
mechanisms was irrelevant in this analysis (subjects did not have
to respond to feature contrast), we used an eightfold training–
testing algorithm. In this scheme, we first removed information
about the order in which trials were acquired during the exper-
iment by randomizing the order in which trials were stored on
disk. Next, we split up the dataset into eight equally sized sub-
sets. Subsequently, a linear discriminant classifier was trained to
discriminate between stimulus classes using seven-eighths of the
data, and was tested on the remaining one-eighth of the data,
thereby ensuring independence of training and testing sets, re-
peating that scheme until all data were used for testing once, but
never using the same data for training and testing in one train–
test cycle. To obtain final accuracy scores, we averaged across
the eight iterations. As before, the EEG activity at individual
electrodes was used as features for classification and the cross-
validation procedure was executed for every time sample in a
trial, yielding the evolution of classification accuracy over time.
Finally, we wanted to determine the point in time at which

neural signals could best explain the behavioral results. For this
analysis, rather than controlling for the influence of decision
mechanisms as we did initially, we now wanted to include this
influence on classification accuracy. Therefore, we used the T1
data as training set for the linear discriminant. Because decision
mechanisms and conscious access are known to involve frontal
cortex (4, 18), we went back to including all electrodes in this
analysis. A control analysis confirmed that, when training on T1,
classification accuracy was indeed better for all electrodes
compared with restricting to occipital electrodes (Fig. S9, Top;
compare Fig. S4A, where the reverse is the case). All final
analyses are therefore executed on T1 trained data, using all
electrodes. Again, we performed 2 × 2 ANOVAs on the behavioral

Fahrenfort et al. www.pnas.org/cgi/content/short/1617268114 3 of 14

www.pnas.org/cgi/content/short/1617268114


and neural data as before, and again we performed large 2 × 2 × 2
ANOVAs, which include the normalized behavioral and normal-
ized neural data as a repeated measure (see Fig. S9, Bottom, for
normalized responses).
To further fully characterize the moment in time at which the

neural data are able to explain the behavioral data, we quantified
the degree to which the neural data can serve as a model for the
behavioral data using a goodness of fit on the behavioral data,
taking the neural data as a reference (see main text for details).
We computed this measure on the normalized neural and be-
havioral data, using the same rationale for normalization as
before. Goodness of fit was calculated for every time point of the
neural data, using a 40-ms moving average (we used a forward-
looking moving average to maintain liberal estimates of fit on-
sets). This was done separately for the masking factor, the AB
factor, and for all data. The masking factor was computed by
averaging accuracy scores across the AB conditions, the AB factor
was computed by averaging across the masking conditions, and
the total data (masking plus attention plus their interaction) was
computed by averaging across pairs of values within each con-
dition. Using this averaging procedure, the total number of points
was kept constant for each estimation, while still being able to
generate separate estimates for masking, AB, and all data.
However, given the uneven number of subjects (n = 11), we could
not create a balanced set when averaging within conditions for
the total data. Therefore, the procedure was repeated 11 times
for all fit types (masking, AB, and total), leaving out a subject at
each iteration to acquire an even number, and then averaging
over the 11 resulting fits to obtain the final values.

SI Results
Prediction of Behavioral Accuracy Based on Neural Classification
Accuracy. The 12 Kanizsa–control pairs (Fig. S1) differ in the
degree to which they result in perceptual integration. This is
reflected in variations in behavioral accuracy at distinguishing
between a Kanizsa and its control across these pairs. To establish
a direct link between EEG classification accuracy and perceptual
integration, we used variations in peak classification accuracy to
predict variations in behavioral accuracy. To obtain classification
accuracies for the 12 pairs, we used the same classifier as was
used in the other analyses (see Fig. S3 for the training task).
Importantly, we did not train separate classifiers for separate
Kanizsa–control pairs; only the testing was performed separately
for the 12 pairs. Because we used a single classifier that was trained
indiscriminately on the entire stimulus set, it is only sensitive to
differences in perceptual integration that generalize across the
entire set. This is important because it prevented classification ac-
curacy for any Kanizsa–control pair from being confounded by id-
iosyncratic features in that pair (such as luminance or the makeup
of the inducers).
Next, we averaged across subjects and used robust linear re-

gression to predict behavioral accuracy using classifier performance.
Fig. 2C and Fig. S5 show regression slopes and corresponding R2

values when predicting behavioral accuracy using peak EEG clas-
sification accuracy at 264 ms across the 12 Kanizsa–control pairs.
Robust linear regression guards against violations of assumptions
underlying ordinary least squares, and guards against the influence
of outliers (38). Fig. S5A shows regressions for each of the four
experimental conditions (as was done in the main text for T1 in
Fig. 2C). This analysis shows that the T1 effect of Fig. 2C is
replicated: peak EEG classification performance is predictive for
behavior in both unmasked conditions, but unsurprisingly not in
the masked conditions (where both behavior and classification
accuracy was at chance).
However, the unmasked short-lag condition seems to have

slightly less predictive power compared with the unmasked long-
lag condition (lower R2 and higher P value for the top-right panel
compared with the top-left panel). This is to be expected if the

AB manipulation affects behavioral performance without affecting
perceptual integration. If the lack of conscious access in the AB
(short lag) indeed selectively affects behavioral performance but
not perceptual integration itself, one would expect better pre-
dictive power when using these data to predict behavioral per-
formance that was not affected the AB, such as behavior at T1.
The ability of peak classification accuracy in the four experi-
mental conditions to predict T1 behavior across the 12 pairs is
shown in Fig. S5B.
Indeed, short-lag T2 EEG classification is better at predicting

T1 behavior than it is at predicting short-lag T2 behavior
(compare the top right panel of Fig. S5B to the top right panel of
Fig. S5A). There, predictive performance is very similar for the
unmasked long- and short-lag conditions, as would be expected if
the neural processes involved in perceptual integration are not
impacted by the AB. Together, these data show independent
conformation that peak classification accuracy at 264 ms is able
to predict behavioral accuracy across the Kanizsa–control pairs,
confirming its validity as a neural index of perceptual integration.

The Contribution of Frontal Cortex to Perceptual Integration. To
investigate the contribution of frontal regions to perceptual in-
tegration, we also applied the classification analysis and the
brain–behavior regression from Fig. 2C to the frontal electrodes:
Fp1, AF7, AF3, Fpz, Fp2, AF8, AF4, AFz, and Fz (bottom right
panel of Fig. S6A; black dots show the electrode selection in the
topographic map). This analysis shows some modulation of
classification accuracy in frontal cortex, both in the 264- and in
the 406-ms time frame—albeit much lower than what is observed
in occipital cortex (Fig. S6A). Importantly, however, although
classification accuracy seems to show a difference between the
AB and no-AB condition, none of these modulations predicts
behavioral accuracy across the Kanizsa–control pairs, neither in
the T1 condition nor in any of the other conditions (Fig. S6B;
compare with Fig. 2C in the main manuscript and Fig. S5A).
This shows that the frontal signal is not causally involved in the

strength of perceptual integration, consistent with the distribution
of the perceptual integration signal that we observed in Fig. 2 B
and C. This is in line with our finding that a selection of occipital
electrodes is advantageous when using independent training runs
to obtain a “pure” measure of perceptual integration (Fig. S4).
Because the frontal signal is nonselective with respect to the
strength of perceptual integration, it is likely to reflect a generic
presence/absence signal as a precursor to global ignition and
conscious access later on (which is known to occur in the range
of the P300).
Note that we also performed an analysis on all electrodes, while

training on T1 (Fig. 5 in the main manuscript). This analysis was
intended to look at the contribution of other signals and mech-
anisms to behavior than perceptual integration alone. There, we
further showed that no notable classification advantage was
gained at 264 ms over what was observed in occipital cortex when
adding frontal electrodes. The pattern of results was largely the
same as what was observed when restricting the analysis to
electrodes in occipital cortex (compare Fig. 2 to Fig. 5 in the main
manuscript). This shows that the information contained in frontal
cortex in the 264-ms time frame does not meaningfully contribute
to classification accuracy over and above what is already present
in occipital cortex. Later in time, however, we do see a contri-
bution of centroparietal and frontal electrodes to classification
accuracy at 406 ms, on par with the outcome of the behavioral
decision, the distribution of which can be observed in Fig. 5B
(Bottom).
Together, these analyses show that the occipital cortex contains

a signal that uniquely reflects perceptual integration, and that this
signal is not modulated by the presence or absence of conscious
access. Frontal cortex does contain a weak signal in the 264-ms
range that seems sensitive to whether a perceptually integrated
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signal will be reported, but this signal is not diagnostic or selective
for the strength of perceptual integration, and does not provide a
classification advantage over the signals that are already present
in occipital cortex.

Seen–Unseen Analysis. A common analysis approach in con-
sciousness research has been to perform a post hoc selection of
neural data based on whether trials are behaviorally seen or
unseen. Although such an analysis can in principle be useful in
addition to a main analysis, it also has intrinsic pitfalls. Impor-
tantly, one cannot dissociate between the possibility that any
observed effect of seen or unseen trials is a cause, a consequence,
or a correlate of consciousness (also see ref. 39). Even when
equating objective performance between seen and unseen con-
ditions (40), such an approach can never determine with certainty
whether the equated objective performance between seen and
unseen might not be caused by uneven mixes of low-level stimulus
or other bottom-up–related effects on the one hand and cogni-
tive factors (i.e., attention) on the other (e.g., see discussion in
ref. 41). Therefore, before presenting this seen–unseen analysis,
we make the disclaimer that the only way of establishing cause
and effect is by manipulating an independent variable (e.g.,
through masking or the AB) and determining the effect of that
manipulation on behavior and neural processing across all trials,
as is done in the main text. Again, any analysis in which a post
hoc selection of neural data are made based on subject responses
cannot establish with certainty whether the observed effects are
caused by the manipulation in question, or are merely a conse-
quence of coincidental differences in initial stimulus strength,
noise levels in the neural machinery (e.g., waxing and waning of
attention), criterion setting, incidental response errors, or any
combination thereof.
This becomes apparent when inspecting the T1 plots (top row)

of Fig. S7A. Here, we selected T1 trials based on whether a
Kanizsa was seen or not, and looked at classification accuracy
over time for these trials (classification accuracy was computed
using the same classifier as was used in the core analysis of Fig. 2
in the main text; SI Methods). Although classification accuracy is
clearly modulated by visibility of T1, it is impossible to know
what caused this modulation. The “unseen” stimuli may have
escaped report because the subject had his eyes closed on some
of these trials, was momentarily not attending, because the
stimulus had less bottom-up strength than its “seen” counterparts,
because subjects had a conservative response criterion, because
the wrong button was accidentally pressed, or any combination of
these. It is evidently questionable what one can conclude about
the effect of access consciousness on perceptual integration based
on such a seen–unseen analysis of T1 trials, because access con-
sciousness was not manipulated here. Importantly, however, this is
not only because we did not explicitly manipulate consciousness
for T1 (although this makes the flaw in the approach more ap-
parent), but rather because one cannot attribute cause and effect
using an approach in which a dependent measure (the seen–
unseen response) is used to generate experimental conditions. As
a general reminder: an experimental condition should always be
one that is under the control of the experimenter, not under
control of the subject.
The same shortcoming applies in any post hoc seen–unseen

analysis approach of neural data, even when the experiment does
contain an explicit manipulation of consciousness such as
masking or the AB, and even when controlling for objective
performance. Indeed, as we can see in the four experimental
conditions (row 2 and 3) of Fig. S7A, there is a clear effect of
seen–unseen on short-lag (AB) trials. Unseen short-lag trials
(fourth column, second row) have a lower classification accuracy
than seen short-lag trials (second column, second row). How-
ever, as for T1, one cannot attribute this seen–unseen modula-
tion to differences in conscious access, as differences in bottom-

up stimulus strength, attention, as well as response errors have a
big influence on whether a trial is classified as seen or unseen.
The seen and unseen conditions will not be balanced with re-
spect to these coincidental properties and can thus not be sen-
sibly compared. Therefore, if any, the only somewhat legitimate
comparison in terms of the effect of conscious access on per-
ceptual integration would be between short and long lag within
the seen category (so between the first and second column) on
the one hand, or between short and long lag within the unseen
category (so between the third and fourth column) on the other.
These within category comparisons clearly show that (in)visi-

bility is not modulated by lag (i.e., classification accuracy is
equally strong for short- and long-lag seen trials, as well as for
short and long-lag unseen trials). If anything, perceptual in-
tegration is stronger for the short-lag trials than for the long-lag
trials, both within the seen and within the unseen category, al-
though this is hard to ascertain due to the fact that different
stimulus counts go into these categories as a result of post hoc
selection. Also consistent with the conclusion of the main text, we
see that unseen short-lag trials show a clear signature of per-
ceptual integration, further supporting themain conclusion of this
study that perceptual integration can occur in the absence of
conscious access. In short, despite disclaimers about a seen–unseen
analysis approach, the seen–unseen data are consistent with the
results in the main text: perceptual integration is not modulated by
conscious access.
Interestingly—and again in line with the main text—the same

does not hold for the control experiment in which weak masking
was applied. If we do the same seen–unseen analysis for this
control experiment, as shown in Fig. S7B, a different picture
emerges. Here, we see a clear effect of masking on perceptual
integration within the seen category, in contrast with the AB
effect of Fig. S7A. Weakly masked seen trials result in evidently
lower peak classification accuracy than unmasked seen trials,
supporting the notion that masking impacts perceptual integra-
tion directly. A similar comparison could not be made in the
unseen category, because not enough trials went undetected in
the unmasked condition. However, it is noteworthy that weakly
masked unseen trials could not be classified above chance, again
in line with the conclusion from the main text that masking
impacts visibility by disrupting perceptual integration directly,
although, once again, it is important to realize that many other
factors could have contributed to classification performance in
this “weakly masked” unseen category (erroneous button presses,
lapses of attention, etc.).

T1-Based Classification at 264 ms. When training the classifier on
T1 data using all electrodes, and testing this classifier on the
T2 data, the 264-ms time point showed a strong main effect of
masking (F1,10 = 91.63, P < 10−5), a main effect of AB (F1,10 =
8.22, P = 0.017), and a trending interaction between masking and
AB (F1,10 = 4.06, P = 0.071) (Fig. 5B, Top). To test directly
whether the measurement source (neural or behavioral) at
264 ms results in a differential effect on classification accuracy,
we again entered the normalized measurements into a large 2 ×
2 × 2 ANOVA with factors measure (behavioral/neural), AB
(yes/no), and masking (yes/no) (SI Methods). There was no in-
teraction between measure and masking (F1,10 = 0.274, P = 0.61),
but importantly there was an interaction between measure and AB
(F1,10 = 6.75, P = 0.027), as well as a trending three-way interaction
(F1,10 = 4.50, P = 0.060). The impact of measure confirms that, even
when decision, selection, and response mechanisms are allowed
contribute to classifier performance, the neural data at 264 ms
cannot explain the pattern of results that is observed in behavior.

SI Discussion
Mechanisms of Masking and the AB. In line with many previous
studies, the current manuscript shows that different neural
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mechanisms are involved in masking and the AB. In this section,
we provide a short description of what these mechanisms may be.
Before we begin, it is important to note that there are different
types of masking, such as forward masking, backward masking,
metacontrast masking, pattern masking, and object substitution
masking (42), and that these are likely to have different neural
substrates. Here, we follow the experimental manipulation of this
manuscript and focus only on backward pattern masking, in which
a randomly structured pattern follows the target stimulus, but this
may not hold for other types of masking. In addition, we make the
disclaimer that not all AB tasks are necessarily the same, and
different AB tasks may be supported by different mechanisms (43).
Consistent with the data shown in the current manuscript,

however, many studies suggest that backward pattern masking
leaves feedforward processing largely intact, while selectively
interfering with recurrent processing in visual cortex (13, 14). In
this theoretical framework, a trailing mask is not able to catch up
with the initial feedforward volley that is initiated by the target
stimulus, but disrupts recurrent signals coming back from regions
further up in the visual hierarchy. The existence of abundant
reciprocal pathways from regions higher in the cortex to lower-tier
regions is well documented (e.g., ref. 44). Local feedback path-
ways within visual cortex have been have been ascribed a variety of
(plausibly related) functional roles, such as predictive coding and
perceptual hypothesis testing, figure–ground segregation, per-
ception of visual detail, perceptual integration, object-based at-
tention, binding, perceptual grouping, as well as (phenomenal)
consciousness. Although the degree to which these functions
overlap has not been exhaustively determined, overwhelming
evidence now suggests that backward masking has a detrimental
effect on functions that rely on local recurrent processing within
visual cortex (12–14).
The AB, on the other hand, is thought to leave both feed-

forward processing and local recurrent processing within visual
cortex largely unaffected. Indeed, early studies showed that word
targets that go undetected in an AB paradigm are affected during
late stages of visual processing (17). The late time frame of theAB
was later confirmed in a study by Sergent et al. (18), in which the
effects of the AB are attributed to long-range interactions be-
tween frontal cortex and a distributed network of cortical asso-
ciation areas (4, 45). These global long-range recurrent interactions
have been shown to carry an all-or-none character that is insensitive
to gradual perceptual changes such as those that arise from re-
current processing within visual cortex (46).
When adding our own results to these, a picture emerges in

which masking disrupts local recurrent interactions that reflect
perceptual integration in visual cortex, whereas the AB impacts
later conscious access by disrupting long-range integration (or
“global ignition”) across frontal cortex and the sensory areas,
while potentially leaving perceptual integration intact.

Implications for Global Neuronal Workspace Theory and the Debate
About the Existence of Phenomenal vs. Access Consciousness. The
Global Neuronal Workspace (GNW) model, as advocated by
Dehaene and others (4, 45), does not exclude the possibility of
perceptual integration in occipital cortex in the absence of con-
sciousness, as can also be seen the lower left quadrant of Dehaene’s
taxonomy of conscious and unconscious processing (see figure 1 in
ref. 4). In the nomenclature of that taxonomy, this quadrant is
“preconscious.” The same taxonomy also contains a quadrant that
is called “subliminal” (or one might say “truly unconscious”) and
that does not undergo neuronal/perceptual integration. “True”
conscious perception in GNW theory is then reserved only for the
lower right quadrant as a result of global ignition across frontal
cortex and the association areas. Thus, although the GNW model
concedes the possibility of preconscious perceptual integration (in
addition to unconscious, this distinction is important), it further
attributes true perception (consciousness) only to global ignition.

However, there is a tension in GNW theory that is central to the
argument that consciousness is uniquely associated with access (or
global ignition). This tension has spawned a debate about the
existence of phenomenal consciousness, a form of consciousness
that is hypothesized to embody the contents of conscious experi-
ence, and that is thought to exist also for representations that are
not cognitively accessed (30). The debate is partly caused by the
fact that it is unclear in GNW theory what counts as true per-
ception (consciousness), if one is to avoid the circularity of de-
fining consciousness as global ignition without reference to some
independent benchmark.
GNWs initial way out of the conundrum of consciousness has

been to use behavioral report as such a benchmark (4). However,
there are many examples in which “unconscious” or preconscious
representations have been shown to exert clear influences on
behavior, even when they are not accessed. For example, uncon-
scious representations have been shown to influence cognitive
control (47) and cause above-chance behavioral performance in
blind-sight studies (24). Even more notable are results from split-
brain and neglect patients. Split-brain patients report seeing
nothing when words are presented to their right visual field, but
when asked to draw them they are still able translate these words
into complex drawings (48). Similarly, a patient with left-sided
neglect could not overtly discriminate between two houses, de-
spite the left side of only one of the two houses being on fire.
However, when asked to choose one of the two “identical” houses,
the patient would consistently prefer the house that was not on
fire (49). Although some of these results are acknowledged by
GNW theory, they are incompletely represented in the traditional
GNW taxonomy put forward by Dehaene and colleagues, as this
would require both the subliminal and the preconscious quadrant
to penetrate into frontal cortex. Complex behaviors as those ob-
served in split brains are preconscious by GNW logic, but would
require an extended workspace involving frontal cortex that is not
accessible for verbal report or internal narrative. Such represen-
tations are typically excluded from the true correlate of con-
sciousness by definition, without providing proper argumentation
to do so (e.g., also see ref. 5).
Given the well-documented ability of unconscious and pre-

conscious information to penetrate frontal cortex and influence
behavior, the pressing question becomes what separates “report”
from “conscious report”? Barring the circularity of defining
consciousness as global ignition, GNW’s only available point of
exit has been to relate conscious access uniquely to representa-
tions that are “perceptual” in nature (representations underlying
the contents of experience, referred to as perceptual integration
in this manuscript). Consequently, global ignition is only con-
scious if it is subserved by perceptual representations; hence the
lower right quadrant in figure 1 of ref. 4, where perceptual in-
tegration is combined with long-range integration (global ignition).
However, taking perceptual representations as the basis for eval-
uating consciousness in a GNW framework seems to run directly
counter to the claim that perceptual representations can exist
without consciousness (as GNW puts forward). Put differently,
GNW theory asserts that something is conscious when it is per-
ceptual, but only when it is accessed (or ignited), without seeming
to provide further argument why or when ignition is required be-
fore perceptual representations become “truly” conscious.
As a result, GNW theory claims that perceptual integration in

occipital cortex can occur outside conscious experience, while at
the same time requiring perceptual integration as the core pre-
requisite for catapulting global ignition into the realm of con-
scious experience. An analogy would be to say that a plane cannot
fly without a pilot, and that if it does fly without a pilot, is not
really flying (but rather “preflying”) because there is no pilot. Or
to push it even further: it is like saying that the pilot is more
crucial for flying than the wings of the plane (admittedly, a pilot
does make the flight last longer and gives it purpose, but the act of
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flying does not require one, as we show in the main manuscript).
This is noteworthy in the context of the ever-increasing literature
on consciousness and the debate on phenomenal vs. access
consciousness. On the one hand, there is a large literature on
access consciousness that identifies the neural correlate of con-
sciousness as global ignition in the P3 time frame (4, 18, 45). On
the other hand, there is a large literature that identifies a neural
correlate of consciousness earlier in time, coinciding with neural
markers of perceptual integration, and which scales with sub-
jective experience (14, 26, 29). Although the latter literature
typically does not deny the existence of a late (or global) cor-
relate related to conscious access, the former literature uniquely
ascribes consciousness to conscious access only.
In the current manuscript, we show an occipital signal that

reflects the contents of experience (perceptual integration, Fig.
2C). Importantly, this signal is able to escape conscious access
yet retain a clear perceptual signature (Fig. S5B). Rephrasing the
question, how can “real” conscious perception depend on global
ignition (access) when the data uncover a signal reflecting the
contents of conscious perception that is impervious to the same
access signal and that is not represented frontally (Figs. S4 and
S6)? Logically, the argument that the contents of experience are
represented in one region, yet real experience requires global
ignition to other regions (without clarifying why that ignition is
required to invoke the basis for experience), seems problematic.
No argument is given why experiencing stuff only happens when
perceptual representations are “broadcast” to a global neuronal
workspace (e.g., also see refs. 50 and 51), or how this step in-
creases the explanatory power of the framework in relation to
conscious experience.
In our view, a promising alternative to GNW theory is in-

tegrated information theory (IIT) by Giulio Tononi (52). IIT is
the only theory that specifies in mathematical terms which rep-
resentations give rise to consciousness and which do not. IIT
provides a precise mathematical description of how conscious
experience relates to the physical world, without having to rely
on a particular biological implementation with elusive defining
features. Interestingly, IIT would have no problem attributing
consciousness to integrated information within visual cortex (=
phenomenal consciousness). In the framework of IIT, phenom-
enal consciousness would be a label for “phi” in a subnetwork (or
complex, in IIT terminology), and access consciousness would be
the name for a larger encompassing network with larger phi
(presumably larger, although this is an empirical question). What
the current manuscript shows is that the subnetwork can po-
tentially operate without being modulated by the larger network,
giving it an ontologically independent status.

How Does Perceptual Integration Relate to Semantic Integration of
Words. Early studies asked whether the meaning of words can be
processed without conscious awareness of those words (e.g., see
ref. 53). This was initially disputed (e.g., ref. 54), but later EEG
and imaging studies firmly established that words could be pro-
cessed up to a semantic level despite not being consciously
perceived (17, 55). This is in line with the notion that extraction of
complex information can occur unconsciously during the initial
feedforward sweep of activation (13, 26). However, there have
also been recent reports that the effects of unconscious words

extend to more complex integration, in which the brain combines
masked multiword utterances to reflect a single semantic valence
(21). For ease of reference, we refer to these multiword in-
tegration processes as semantic integration.
In this section, we discuss the differences and similarities be-

tween perceptual integration and semantic integration. First and
foremost, we would like to stress that semantic integration and
perceptual integration have substantially different psychological
outcomes. Perceptual integration manifests when small changes
in the input or configuration of the stimulus can have dramatic
perceptual effects, such as when the inducers of a Kanizsa are
rotated or modified to induce or remove surface perception. In
contrast, during semantic integration, changes in words or
numbers have small perceptual effects, but big semantic effects.
For example, the word combinations “bad rape” and “bad grape”
do not differ much in terms of visual appearance, but differ
vastly with respect to their perceived meaning. This makes per-
ceptual and semantic integration hard to compare directly on a
psychological level.
Accordingly, these integration processes are most likely sub-

served by different pathways and levels in the cortical hierarchy.
This becomes most apparent when comparing the effects of
masking on perceptual integration to the effects of masking on
semantic integration (for an extensive review of effects of se-
mantic subliminal processing, see ref. 45). Masking is known to
abolish recurrent mechanisms involved in perceptual integration
within visual cortex (13, 14), whereas late effects of semantic
integration seem to survive masking. For example, semantic in-
tegration results in N400 modulations (21), a time frame at which
perceptual integration is abolished under masking (also see the
current manuscript). So what differences might exist between
perceptual integration and semantic integration in neural terms?
One tentative explanation might be that the orthography of

words can be extracted more or less automatically in the feed-
forward sweep, even resulting in activation of semantic repre-
sentations, but that more extensive multiword semantic integration
(unlike perceptual integration) occurs higher up in the hierarchy,
where the incoming mask is not able to effectively interrupt in-
tegration. Indeed, evidence suggests that the visual system is able to
unconsciously extract word meanings in the feedforward sweep
(45), just like shapes and object categories can be extracted un-
consciously in the feedforward sweep (13, 26). Early models of
word reading have a feedforward architecture that is conceptually
similar to feedforward models of the visual hierarchy, for example,
compare ref. 56 to ref. 15. However, an important difference may
be that perceptual integration occurs when features are dynami-
cally bound in perception across visual cortex (15), whereas mul-
tiword semantic integration might take place in word-reading
networks higher up in the hierarchy beyond the visual word form
area (57), in accordance with the known anatomy of reading
networks and early models of word reading (56, 57). The latter
networks may be less sensitive to masking, such that perceptual
integration (and hence conscious visual experience) of a masked
word is abolished due to interruption within visual cortex, while still
allowing for some (albeit minimal) degree of semantic integration
of word pairs further up in the hierarchy.
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Fig. S1. The 12 Kanizsa–control pairs; see SI Methods for rationale behind stimulus design.
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A  Masks for triangular Kanizsas and controls

B  Masks for square Kanizsas and controls

C  Masks for pentagonal Kanizsas and controls 

Fig. S2. Masks used during the experimental tasks. Triangular (A), square (B), pentagonal (C), and examples of lower-contrast nonmasks (D).

10 ms

1000 ms +/-50 ms jitter

10 ms

tim
e

Fig. S3. Independent RSVP task that was used to train the EEG classifier. Subjects were required to press a button whenever a black target would repeat
(regardless of whether this target contained a Kanizsa or not), while ignoring the red distractors. Note that this task allowed us to train the classifier using a
signal that was not contaminated by response mechanisms, decision mechanisms, or task relevance. We also performed an analysis in which these mechanisms
were able to contribute, by training on T1 (Fig. 5).
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Fig. S4. Classifier weights when training on the 1-back RSVP task (A, Left) and the correlation class separability map (A, Right) at 264 ms. Line graphs are
average ± SEM in light blue; thick black lines reflect P < 0.05, cluster-based permutation test. Because the signal is clearly occipital in nature, we compared
T1 classification accuracy for all electrodes (B, Left) to classification accuracy for only the occipital electrodes (B, Right) PO7, PO3, O1, Iz, Oz, POz, PO8, PO4, O2;
black dots in the topographic maps. Because the occipital electrodes result in superior performance, we used the occipital electrodes for the initial analyses
(Figs. 2–4). Note, however, that using all electrodes and training on T1 (as in Fig. 5) did not substantially change the pattern of results.
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B Predicting T1 behavioral accuracy for the 12 Kanizsa-control pairs
    using EEG based classification accuracy at 264 ms for each of the conditions
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Fig. S5. Prediction of behavioral accuracy based on classifier performance in each of the four experimental conditions. (A) Behavioral accuracy within con-
ditions based on classifier accuracy within those conditions. In both unmasked conditions, classification accuracy nicely predicts behavioral performance across
the 12 Kanizsa–control pairs, albeit weaker in the short-lag AB condition. This is not surprising, given that access mechanisms are likely to dilute behavioral
performance. (B) When using classifier performance to predict the uncontaminated T1 behavior, performance is invariably high in the unmasked conditions.
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A  EEG classification accuracy based on frontal electrodes only

B  Predicting behavioral accuracy for the 12 Kanizsa-control pairs using 
    classification accuracy at 264 ms based on frontal electrodes only
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Fig. S6. Contribution of frontal electrodes to perceptual integration. Although the signal related to perceptual integration is clearly occipital in nature (Fig.
S4), a control analysis was performed to determine whether frontal electrodes contribute to this signal. (A) Classification accuracy for the four experimental
conditions as well as T1, using only frontal electrodes: Fp1, AF7, AF3, Fpz, Fp2, AF8, AF4, AFz, and Fz. Right Bottom shows the topographic correlation/class
separability map when using all electrodes (see SI Methods for details), with the frontal electrodes highlighted using black dots. (B) The degree to which this
signal predicts behavioral performance across the 12 Kanizsa–control pairs in the four experimental conditions as well as T1. The frontal signal is invariably
unable to predict behavioral performance across the 12 Kanizsa–control pairs (Fig. 2C and Fig. S5).
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Fig. S7. Seen–unseen analysis. (A) Splitting the main experiment up according to behavioral decision. (B) Splitting the masking control experiment up
according to behavioral decision. Please read SI Results, Seen–Unseen Analysis, for an explanation of the pitfalls associated with behavior contingent selection
of neural data and proper interpretation. Results are consistent with the main text.
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Fig. S8. Contrast detection vs. perceptual integration. Stimuli used in the masking control analysis belonging to Fig. 3. Stimulus design was such that one
could compare either in the contrast dimension or in the perceptual integration dimension, while collapsing orthogonally over the other dimension.
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Fig. S9. Classification accuracy for all electrodes and occipital electrodes when training and testing on T1 (eightfold leave-one-out procedure). Line graphs are
average ± SEM in light blue; thick black lines reflect P < 0.05, cluster-based permutation test. Given the contribution of response and decision mechanisms to
the response, we now see a slight enhancement when using all electrodes compared with when using occipital electrodes only (Fig. S4). Bottom panels shows
graphs for the normalized responses when training on T1 at 264 and 406 ms, and normalized responses obtained from behavior. ns, not significant (P > 0.05).
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 10−4, *****P < 10–5, ******P < 10–6, **********P < 10–12.
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